Maestría en Tecnologías de la Información y Aplicaciones en RED: eProfesor     red-social-1     logo iva 150     logo-blogs-suricata-150     logo-catunesco-150

Crear PDF Recomendar Imprimir

Traffic Signal Optimization in “La Almozara” District in Saragossa Under Congestion Conditions, Using Genetic Algorithms, Traffic Microsimulation, and Cluster Computing

Traffic Signal Optimization in “La Almozara” District in Sar...
  • Autor(es)
    J. Sánchez | M. Galán | E. Rubio
  • Revista
    IEEE Transactions on Intelligent Transportation Systems
  • Volumen
    11
  • Páginas
    132-141
  • ISSN
    1524-9050
  • Editorial
    IEEE
  • Lugar
    USA
  • Idioma
    Inglés
  • Fecha
    Mar/2010
  • Enlace

Abstract

Urban traffic congestion is a pandemic illness affecting many cities around the world. We have developed and tested a new model for traffic signal optimization based on the combination of three key techniques: 1) genetic algorithms (GAs) for the optimization task; 2) cellular-automata-based microsimulators for evaluating every possible solution for traffic-light programming times; and 3) a Beowulf Cluster, which is a multiple-instruction-multiple-data (MIMD) multicomputer of excellent price/performance ratio. This paper presents the results of applying this architecture to a large-scale real-world test case in a congestion situation, using four different variables as fitness function of the GA. We have simulated a set of congested scenarios for ??La Almozara?? in Saragossa, Spain. Our results in this extreme case are encouraging: As we increase the incoming volume of vehicles entering the traffic network - from 36 up to 3600 vehicles per hour - we get better performance from our architecture. Finally, we present new research directions in this area.